Addressing Alternative Explanations:
 Multiple Regression

17.871

Did Clinton hurt Gore example

■ Did Clinton hurt Gore in the 2000 election?
\square Treatment is not liking Bill Clinton

- How would you test this?

Bivariate regression of Gore thermometer on Clinton thermometer

Clinton thermometer

Did Clinton hurt Gore example

- What alternative explanations would you need to address?
- Nonrandom selection into the treatment group (disliking Clinton) from many sources
- Let's address one source: party identification
- How could we do this?
\square Matching: compare Democrats who like or don't like Clinton; do the same for Republicans and independents
\square Multivariate regression: control for partisanship statistically

Democratic picture

Gore thermometer

Clinton thermometer

Independent picture

Clinton thermometer

Republican picture

Clinton thermometer

Combined data picture

Clinton thermometer

Combined data picture with regression: bias!

Clinton thermometer

Combined data picture with

 "true" regression lines overlaid

Clinton thermometer

Tempting yet wrong normalizations

Subtract the Gore therm. from the avg. Gore therm. score

Clinton thermometer

Subtract the Clinton therm. from the avg. Clinton therm. score

3D Relationship

The Linear Relationship between Three Variables

Multivariate slope coefficients

Bivariate estimate: $\quad \hat{\beta}_{1}^{B}=\frac{\operatorname{cov}\left(X_{1}, Y\right)}{\operatorname{var}\left(X_{1}\right)}$ vs.

Party ID effect (on Gore) in multivariate (M) regression

Multivariate estimate: $\quad \hat{\beta}_{1}^{M}=\frac{\operatorname{cov}\left(X_{1}, Y\right)}{\operatorname{var}\left(X_{1}\right)}-\hat{\beta}_{2}^{M} \frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{var}\left(X_{1}\right)}$

Clinton effect on Party ID in bivariate regression

When does $\quad \hat{\beta}_{1}^{B}=\hat{\beta}_{1}^{M}$? Obviously, when $\quad \hat{\beta}_{2}^{M} \frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{var}\left(X_{1}\right)}=0$

The Slope Coefficients

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(\bar{Y}-Y_{i}\right)\left(\bar{X}_{1}-X_{1, i}\right)}{\sum_{i=1}^{n}\left(\bar{X}_{1}-X_{1, i}\right)^{2}}-\hat{\beta}_{2} \frac{\sum_{i=1}^{n}\left(\bar{X}_{1}-X_{1, i}\right)\left(\bar{X}_{2}-X_{2, i}\right)}{\sum_{i=1}^{n}\left(\bar{X}_{1}-X_{1, i}\right)^{2}} \text { and } \\
& \hat{\beta}_{2}=\frac{\sum_{i=1}^{n}\left(\bar{Y}-Y_{i}\right)\left(\bar{X}_{2}-X_{1, i}\right)}{\sum_{i=1}^{n}\left(\bar{X}_{2}-X_{2, i}\right)^{2}}-\hat{\beta}_{1} \frac{\sum_{i=1}^{n}\left(\bar{X}_{1}-X_{1, i}\right)\left(\bar{X}_{2}-X_{2, i}\right)}{\sum_{i=1}^{n}\left(\bar{X}_{2}-X_{2, i}\right)^{2}}
\end{aligned}
$$

X_{1} is Clinton thermometer, X_{2} is PID, and Y is Gore thermometer

The Slope Coefficients More Simply

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\operatorname{cov}\left(X_{1}, Y\right)}{\operatorname{var}\left(X_{1}\right)}-\hat{\beta}_{2} \frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{var}\left(X_{1}\right)} \text { and } \\
& \hat{\beta}_{2}=\frac{\operatorname{cov}\left(X_{2}, Y\right)}{\operatorname{var}\left(X_{2}\right)}-\hat{\beta}_{1} \frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{var}\left(X_{2}\right)}
\end{aligned}
$$

X_{1} is Clinton thermometer, X_{2} is PID, and Y is Gore thermometer

The Matrix form

y_{1}	1	$\mathrm{X}_{1,1}$	$\mathrm{X}_{2,1}$...	$\mathrm{x}_{\mathrm{k}, 1}$
y_{2}	1	$\mathrm{x}_{1,2}$	$\mathrm{X}_{2,2}$	\ldots	$\mathrm{x}_{\mathrm{k}, 2}$
	1				
y_{n}	1	$\mathrm{X}_{1, \mathrm{n}}$	$\mathrm{x}_{2, \mathrm{n}}$		x_{k}

$$
\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

3D Linear Relationship

The OutDut

Source \|	SS	df	MS		$\begin{aligned} & \text { Number of obs }=1745 \\ & \mathrm{~F}(2,1742)=1048.04 \end{aligned}$	
Model \|	629261.91	2314	30.955		Prob > F	$=0.0000$
Residual \|	522964.934	1742300	. 209492		R-squared	$=0.5461$
					Adj R-squared	$=0.5456$
Total \|	1152226.84	174466	. 68053		Root MSE	$=17.327$
gore \|	Coef.	Std. Err.	t	$\mathrm{P}>\|t\|$	[95\% Conf.	Interval]
clinton \|	. 5122875	. 0175952	29.12	0.000	. 4777776	. 5467975
party ${ }^{\text {\| }}$	5.770523	. 5594846	10.31	0.000	4.673191	6.867856
_cons \|	28.6299	1.025472	27.92	0.000	26.61862	30.64119

Interpretation of clinton effect: Holding constant party identification, a onepoint increase in the Clinton feeling thermometer is associated with a .51 increase in the Gore thermometer.

Separate regressions

	(1)	(2)	(3)
Intercept	23.1	55.9	28.6
Clinton	0.62	--	0.51
Party	--	15.7	5.8

Is the Clinton effect causal?

- That is, should we be convinced that negative feelings about Clinton really hurt Gore?
- No!
\square The regression analysis has only ruled out nonrandom selection on party ID.
\square Nonrandom selection into the treatment could occur from
- Variables other than party ID, or
- Reverse causation, which is feelings about Gore influencing feelings about Clinton.
\square Additionally, the regression analysis may not have entirely ruled out nonrandom selection on party ID because it may have assumed he wrong functional form.
- E.g., what if nonrandom selection on strong Republican/strong Democrat

Summary: Why we control

- Address alternative explanations by removing confounding effects
■ Improve efficiency

Why did the Clinton Coefficient change from 0.62 to 0.51

. corr gore clinton party, cov
(obs=1745)

> gore clinton party3
gore | 660.681

clinton	549.993	883.182	
party3 \|	13.7008	16.905	.8735

The Calculations

$$
\hat{\beta}_{1}^{B}=\frac{\operatorname{cov}(\text { gore }, \text { clinton })}{\operatorname{var}(\text { clinton })}=\frac{549.993}{883.182}=0.6227
$$

$$
\hat{\beta}_{1}^{M}=\frac{\operatorname{cov}(\text { gore }, \text { clinton })}{\operatorname{var}(\text { clinton })}-\hat{\beta}_{2}^{M} \frac{\operatorname{cov}(\text { clinton, party })}{\operatorname{var}(\text { clinton })}
$$

$$
=\frac{549.993}{883.182}-5.7705 \frac{16.905}{883.182}
$$

$$
=0.6227-0.1105
$$

$$
=0.5122
$$

Accounting for total effects

$$
\begin{aligned}
& \hat{\beta}_{1}^{M}=\frac{\operatorname{cov}\left(X_{1}, Y\right)}{\operatorname{var}\left(X_{1}\right)}-\hat{\beta}_{2} \frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{var}\left(X_{1}\right)} \\
& \hat{\beta}_{1}^{M}=\hat{\beta}_{1}^{B}-\hat{\beta}_{2}^{M} \hat{2}_{1}^{M} \\
& \hat{\beta}_{1}^{B}=\hat{\beta}_{1}^{M}+\hat{\beta}_{2}^{M} \gamma_{21}^{M}
\end{aligned}
$$

Accounting for the total effect

$$
\hat{\beta}_{1}^{B}=\hat{\beta}_{1}^{M}+\hat{\beta}_{2}^{M} \gamma_{21}
$$

Total effect $=$ Direct effect + indirect effect

Accounting for the total effects in the Gore thermometer example

Effect	Total	Direct	Indirect
Clinton	0.62	0.51	0.11
Party	15.7	5.8	9.9

Other approaches to addressing confounding effects?

- Experiments
- Difference-in-differences designs
- Others?
- Is regression the best approach to addressing confounding effects?
\square Problems

Drinking and Greek Life Example

- Why is there a correlation between living in a fraternity/sorority house and drinking?
\square Greek organizations often emphasize social gatherings that have alcohol. The effect is being in the Greek organization itself, not the house.
\square There's something about the House environment itself.

Dependent variable: Times Drinking in Past 30 Days

C8. When did you last have a drink (that is more than just a few alpa)?O have never had a drink \rightarrow Skip 10 C22 (page 10)Not in the past year \rightarrow Skip to C22 (page 10)More than 30 days ago, but in the past year \rightarrow Skip to $\mathrm{C17}$ (page 日)
OMore than a week age, but in the past 30 days \rightarrow Go to C9
OWthin the last week \rightarrow Go to $\mathrm{C} \rightarrow$

C9. On how many occasions have you had a drink of alcohol in the past 30 days? (Choose one answer.)Did not driak in the last 30 days
406109 oncasmons
y^{010} to 19 occasmen
φ O20 to 39 occasions
1 to 2 occessions
7. O40 ar more otcasions
. infix age 10-11 residence 16 greek 24 screen 102
timespast30 103 howmuchpast30 104 gpa 278-279 studying 281
timeshs 325 howmuchhs 326 socializing 283 stwgt_99 475-493 weight99 494-512 using da3818.dat, clear
(14138 observations read)
. recode timespast30 timeshs ($1=0$) ($2=1.5$) ($3=4$) ($4=7.5$)
(5=14.5) (6=29.5) (7=45)
(timespast30: 6571 changes made)
(timeshs: 10272 changes made)

- replace timespast30=0 if screen<=3
(4631 real changes made)
. tab timespast30

Three Regressions

Dependent variable: number of times drinking in past 30 days			
Live in frat/sor house	$\begin{gathered} 4.44 \\ (0.35) \end{gathered}$	---	$\begin{gathered} 2.26 \\ (0.38) \end{gathered}$
Member of frat/sor	---	$\begin{gathered} 2.88 \\ (0.16) \end{gathered}$	$\begin{gathered} \hline 2.44 \\ (0.18) \end{gathered}$
Intercept	$\begin{gathered} \hline 4.54 \\ (0.56) \end{gathered}$	$\begin{gathered} 4.27 \\ (0.059) \end{gathered}$	$\begin{gathered} 4.27 \\ (0.059) \end{gathered}$
R2	. 011	. 023	. 025
N	13,876	13,876	13,876

Note: Corr. Between living in frat/sor house and being a member of a Greek organization is . 42

The Picture

Accounting for the effects of frat house living and Greek membership on drinking

Effect	Total	Direct	Indirect
Member of	2.88	2.44	0.44
Greek org.		(85%)	(15%)
Live in frat/	4.44	2.26	2.18
sor. house		(51%)	(49%)

